ArticleComments [5]
Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry
Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry
Patrick Coffey
Oxford University Press, 2008
400 pp., $33.95

Buy Now

Neil Gussman with Sarah Reisert


The Model Scientist?

Kirk, not Spock.

2 of 3view all

The story Coffey tells centers on two American physical chemists, Irving Langmuir and Gilbert Lewis, who began their careers together in the first decade of the 20th century. Langmuir was thoughtful, affable, brought people together, shared credit (mostly) with collaborators, and managed to be a great family man while becoming rich and famous: he won a Nobel Prize and appeared on the cover of Time magazine. Lewis was home-schooled, did not play well with others, carried lifelong grudges for slights large and small, and died in self-imposed obscurity without a Nobel. In fact, in big-league science, Lewis is comparable to Dan Marino, the best quarterback never to win a Super Bowl.

How famous is the name Gilbert N. Lewis? Now and for more than half a century, every college chemistry student and many high school chemistry students learn to draw Lewis structures—the chemical bond diagrams that show how molecules large and small fit together. The Lewis Acid-Base is among the important definitions every chemistry student learns. Though more than 150 men and women have earned the Nobel Prize in chemistry since Jacobus Van't Hoff earned the first in 1901, few get mentioned in the teaching of chemistry—and fewer still have a presence and a name that lingers in the everyday teaching of chemistry in labs at every college in the world with a chemistry department. Lewis may have the most recognizable name in chemistry, but no Nobel Prize.

Those familiar with major science awards might presume that Langmuir, recipient of the Nobel Prize in chemistry in 1932, was the theoretician and Lewis was of a more practical bent or—worse yet—connected to industry. The reverse is true. Langmuir worked for General Electric during his nearly 50-year career, making millions of dollars with discoveries beginning with his great improvements in the technology of light bulbs. His work with light bulbs led to discoveries in surface chemistry and to his Nobel Prize. Langmuir was, in fact, the first industrial chemist to win the most coveted award in chemistry.

Lewis, meanwhile, was credited with building the chemistry department at the University of California, Berkeley, into one of the greatest in the nation. He rejected any ties with industry or industry-related research in his 30-plus years as chair of the Berkeley chemistry department.

Lewis received his first nomination for the Nobel Prize in chemistry in 1922, then was nominated again in 1924 and 1925 for his work on chemical bonds and thermodynamics. In 1925, Lewis' nomination was blocked by an unfavorable report by Svante Arrhenius, who had won the 1903 Nobel Prize in chemistry. Arrhenius, a notably spiteful man whose machinations Coffey chronicles in some detail, was also at that time the only Swedish winner of the chemistry prize and had been instrumental in promoting or blocking many chemistry and physics Nobel laureates in the two decades following his own award.

Coffey says the negative report by Arrhenius was simply wrong about the importance of Lewis' work. The next year, Lewis was nominated again and got a more favorable report from another Swedish chemist, Theodor Svedberg, suggesting that Lewis should get the prize in the future based on further work on thermodynamics and the chemical bond. But by 1926, Lewis had effectively left thermodynamics and the chemical bond behind for new fields. And Svedberg, who suggested Lewis could wait, received the Nobel Prize in chemistry himself—that very year.

In the years that followed, Coffey relates, "nominations of Lewis were to pile up. In 1929 alone, Lewis received six nominations." In 1932, Lewis received four nominations, while Langmuir received two—and Langmuir got the prize that year. Coffey attributes Lewis missing the prize in 1932 and the next several years to the insidious work of Wilhelm Palmaer, a close colleague of Wilhelm Nernst, the winner of the Nobel Prize in chemistry in 1920. Lewis studied with Nernst in 1901 and developed a lifelong grudge against the German scientist. Lewis "published Nernst's errors whenever possible" in the two decades that followed. In his 1923 book on thermodynamics, Lewis cited many of what he believed were Nernst's errors, calling Nernst's effort to make his heat theorem predictive "a regrettable episode in the history of chemistry."

Nernst never responded in print, but Palmaer and Nernst were close friends—and Palmaer became a member of the Nobel Prize chemistry committee in 1932. Coffey makes a strong case that, by 1936, Palmaer had ensured that Lewis would never receive the prize. Palmaer, Arrhenius' biographer, had previously served as secretary of the Nobel chemistry committee and well knew how to write a memo that would torpedo a nominee.

bottom_line
icon2 of 3view all

Most ReadMost Shared


Seminary/Grad SchoolsCollege Guide